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The problem of the hydrodynamic interaction of two unequal-sized spheres in a 
slightly rarefied gas is treated following the singular perturbation scheme of Sone & 
Onishi (1978), valid a t  small, but finite, particle Knudsen numbers. In  this method 
the solution to the linearized BGKW transport equation governing the gas molecular 
motion consists of two parts: one describing a Knudsen layer where the actual 
microscopic boundary conditions are applied and the other describing a Hilbert 
region where the Stokes equations of continuum hydrodynamics hold. The Knudsen- 
layer solution establishes the ‘slip ’ boundary conditions for the Stokes equations. 
Here we clearly distinguish between particle ‘slip’ due to the type of boundary 
conditions and particle ‘slip’ due to lengthscale effects as measured by the Knudsen 
number. The present analysis has been carried out to first order in particle Knudsen 
number for the case of diffuse reflective molecular boundary conditions. General 
relationships between the first- and zero-order velocity fields, both of which are 
written in the form of Lamb’s (1932) solution to the Stokes equation, are established. 
It is illustrated how these general relationships can be used to determine the force 
and torque acting on a single sphere translating and rotating in a slightly rarefied 
gas. Finally, we have treated the two-sphere problem in a slightly rarefied gas using 
the twin multipole expansion method of Jeffrey & Onishi (1984). Here again, general 
relationships are established between the solutions of the first-order fluid velocity 
field and the zero-order velocity field, the latter being shown to recover Jeffrey & 
Onishi’s results for stick boundary conditions. These general relationships are 
subsequently used to determine the complete resistance and mobility matrices of the 
two-sphere system. The symmetric properties of the resistance and mobility matrices 
are demonstrated for slip boundary conditions, in agreement with the general proof 
of Landau & Lifshitz (1980) and Bedeaux, Albano & Mazur (1977). 

1. Introduction 
The problem of hydrodynamic interaction of two or more bodies in a gas is 

complicated compared with the interactions in a continuum fluid owing to the 
phenomenon of fluid ‘slip’ a t  solid boundaries. Because of this complication, few 
studies exist concerning the resistance and mobility functions for hydrodynamically 
interacting particles in a gas environment, even under low-Reynolds-number 
conditions for the gas. This is despite the fact that numerous practical problems exist 
involving interacting small particles in a gas, such as the transport behaviour of 
interacting aerosols, aerosol coagulation, and aerosol deposition onto surfaces 
(Marlow 1980). 
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Several theoretical studies exist that consider the hydrodynamic interactions of 
two spheres, and a sphere with a plane wall, under ‘classic’ mixed slipstick 
boundary conditions (Davis 1972; Hocking 1973; Goren 1973; Felderhof 1977). 
Although there has been some suggestion that these analyses can provide slip 
corrections for hydrodynamic interactions in a gas environment (Dahneke 1974 ; 
Barnocky & Davis 1988) rigorous kinetic theory treatments demonstrate that the 
actual analysis and boundary conditions are more complex, even a t  small, but finite, 
particle Knudsen numbers (ratio of the gas mean free path to a characteristic particle 
length) where slip corrections are small (Cercignani 1975). We should also mention 
the kinetic theory study of Cukier, Kapral &, Mehaffey (1981) on the hydrodynamic 
interaction of two spheres a t  larg; interparticle separations and the limit of 
vanishing Knudsen numbers. Those authors were able to recover classic full-slip 
results for specular reflective molecular boundary conditions. In  the limit of zero 
Knudsen numbers, Sone &, Akoi (1977) have also obtained classic full-slip results for 
a single sphere under specular reflective molecular boundary conditions and classic 
no-slip results for diffuse reflective molecular boundary conditions, following their 
kinetic theory method. Clearly these studies show that one must distinguish 
between particle ‘slip ’ due to the type of boundary condition and particle ‘slip ’ due 
to lengthscale effects as measured by the Knudsen number. The latter problem is the 
subject of the present work. The general problem is to solve the Boltzmann transport 
equation for the gas molecules subject to the actual microscopic boundary conditions, 
for example diffuse or specular boundary conditions, on solid surfaces (Cercignani 
1975). 

Recently, Onishi (1984) has used a previously developed singular perturbation 
method (Sone & Onishi 1978) to solve the boundary-valued Boltzmann transport 
equation for the axisymmetric problem of the so-called thermal-creep phenomenon 
of two interacting spheres in a slightly rarefied gas. I n  the present study, we follow 
a similar procedure to determine the hydrodynamic resistance functions of two 
unequal-sized spheres in a slightly rarefied gas. 

The starting point in the analysis is the linearized BGKW (Bhatnager, Gross & 
Krook 1954; Welander 1954) form of the Boltzmann equation. A perturbation 
expansion of the linearized Boltzmann equation is considered in terms of the particle 
Knudsen number, Kn. I n  general, the problem is of the singular perturbation type 
involving a boundary or Knudsen layer on the particle surfaces and a continuum or 
Hilbert region outside the Knudsen layer. The Hilbert region has been shown to be 
governed by the usual Stokes equations of low-Reynolds-number hydrodynamics 
(Grad 1963). The essence of the procedure of Sone & Onishi is to first solve the inner 
or boundary-layer problem with the microscopic boundary conditions on particle 
surfaces. Asymptotic matching of the boundary-layer solution with the Hilbert 
region establishes the innermost boundary conditions necessary to uniquely solve the 
Stokes equations. 

The determination of the hydrodynamic resistance and mobility functions for two 
interacting spheres thus still requires solution of the Stokes equations of continuum 
hydrodynamics once the proper boundary conditions have been established through 
the Knudsen-layer analysis. Here we follow the comprehensive analysis of Jeffrey & 
Onishi (1984), based on a generalization of the method of reflections technique 
(Happel & Brenner 1986) known as a twin multipole expansion method, in order to 
solve the Stokes equations subject to slip boundary conditions on the surfaces of two 
spheres. It is shown, however, that the application of Jeffrey &, Onishi’s method to 
the Knudsen-number expansion that describes particle slip requires some newly 
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developed procedures. In fact, for the mobility functions it is shown that an 
innovative approach is necessary. In this study, we give expressions for the complete 
resistance and mobility matrix for the hydrodynamic interaction of two unequal- 
sized spheres at small, but finite, particle Knudsen numbers under diffuse reflective 
molecular boundary conditions that are shown to collapse to Jeffrey & Onishi’s 
solution when the particle Knudsen number is zero. 

The solutions given here are applicable up to the point of overlapping of the 
Knudsen layers surrounding each sphere, where the dimensionless thickness of the 
Knudsen layers is O(Kn). The solution breaks down near the point of touching of 
the two spheres where a near-field analysis, analogous to lubrication theory solutions 
in liquids, would be required. For example, problems involving the coagulation and 
deposition of aerosols may require both the near-field and far-field solutions. 

2. Hilbert region solution. General solutions of Stokes equations subject to 
slip boundary conditions 

Following Sone and Onishi (Sone 1969; Sone & Onishi 1978; and the references 
therein) we consider an asymptotic solution to the linearized Bhatnager-Gross- 
Krook-Walender (BGKW) form of the Boltzmann transport equation at  small 
but finite Knudsen numbers, K n  = h/L, where h is the mean free path of the gas 
molecules and L is some characteristic ‘macroscopic ’ lengthscale. Diffuse reflection 
is assumed to describe the interaction of the gas with a bounding solid wall; i.e. (i) 
reflected molecules have a Maxwellian distribution characterized by the velocity and 
temperature of the wall, and (ii) the net mass flow of gas across the boundary is zero 
(no evaporation or condensation on the solid boundary). Here we only summarize the 
results necessary in the analysis of the isothermal two-sphere problem, relegating 
further details to the above-cited references. 

Let f stand for any one of the fluid dynamic quantities such as velocity, pressure 
and temperature. It can be expressed by a sum of two parts, the Hilbert part fH,  

which does not change appreciably over the mean free path of the gas, and the 
Knudsen-layer part fK,  which varies appreciably near the surface over a distance of 
the gas mean free path in the direction normal to  the boundary, i.e. f = fH + fx. The 
Hilbert quantities can be obtained in an expansion in terms of the Knudsen number 
of the system as 

where K = idKn.  From a moment analysis of the BGKW linearized Boltzmann 
equation for the fluid molecules, it can be shown that the Hilbert parts of the fluid 
dynamic quantities satisfy Stokes equations to any order in the small-Knudsen- 
number expansion (Sone & Onishi 1978; also see Grad 1963). Explicitly these 
equations are 

vpo, = 0, (2) 

w uk = 0,‘I 
(i = 0 , 1 , 2 , .  . .), 

V ~ E ~ - V Z U E ; ,  = 0,J 

(3) 

(4) 

where p,(l + p )  and (2kT,/m) u are the pressure and the mean molecular velocity, 
respectively ; p ,  and To are the reference pressure and temperature, respectively ; 
L-lV is the vector differential operator in physical space ; k is Boltzmann’s constant 
and m is the mass of a single molecule. 

Sone & Onishi (1978) also show that solution of the BGKW linearized Boltzmann 
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equation in the Knudsen layer near the surface, where diffuse molecular reflection is 
assumed to hold, leads to the boundary conditions appropriate for (2)-(4) on the 
interface between the gas and the solid wall as 

u& = uw, (5 )  

u l , - n  = 0, (6) 

and (7)  

where K~ = - 1.016 191, uw is the velocity of the solid boundary, n and t are the unit 
normal vector (towards the gas) and the unit tangential vector to the interface, 
respectively. Note that the zero-order boundary condition, ( 5 ) ,  is the usual no-slip 
condition, whereas the first-order boundary conditions, given by (6) and (7),  are the 
slip boundary conditions. Further note from (7)  that the slip boundary conditions 
require the solution of the zero-order Hilbert solution at  the gas-solid interface. 

Since the Hilbert solutions satisfy the Stokes equations to any order of the particle 
Knudsen-number expansion, both the zero-order and first-order Hilbert solutions of 
the velocity field, uR and ul,, can be cast in the general form given by Lamb (1932). 
Outside a sphere with radius a, in spherical coordinates ( r ,  8, q5), they can be written 
as 

* t = -Ken * [VUR + (VU&)'] * t ,  

where Ymn(8, #) are surface spherical harmonics. Here and hereafter the superscript 
6 = 0 or 1 represents the order in the particle Knudsen-number expansion. 

When the boundary conditions are given in the form of a prescribed velocity field 
on the surface of the sphere, Happel & Brenner (1986) proposed a convenient way to 
determine the coefficients qLn, uLn and p",. First, from the given boundary 
conditions uLI, ,~ = U'(8, #), three scalar quantities Xkn, Ykn and 26,, are 
constructed as m c o  

&rlr=a = ut = 2 C XknYmn(0, $)> (9) 
m=o n=m 

where the subscripts r ,  8, q5 represent the components of a velocity in the directions 
of the coordinates r ,  8, q5, respectively. Then, the three coefficients p k n ,  uLn and qkn 
in (8) are related to these three scalar quantities by 
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The zero-order Hilbert solution uR can be readily obtained by applying the 'stick' 
boundary conditions given by (5). As shown below, with a known zero-order Hilbert 
solution uR given in the form of (8), the boundary conditions satisfied by the first- 
order Hilbert solution u& can be determined from (6) and (7), which leads to direct 
relations between the coefficients pkn ,  vLn, qmn 0 and p,,, 1 1 1  v,,, qmn. 

First, ( 6 )  gives the value of u&,. on a sphere with radius a as 

uh,I,,, = 0. (15) 

Equations (7 )  and (8) give the values of uho and u&+ on the sphere in terms of u i r ,  
u i B  and uRc as 

and 

Note that the particle radius a ,  that appears in the dimensional velocity fields of 
(16) and (17) ,  is the result of selecting the characteristic lengthscale L = a in the 
dimensionless boundary condition (7).  Then from (9)-( 1 1 )  the three scalar quantities 
X k n ,  Ykn and Z k n  are found to be 

X h n  = 0, (18) 

Pkn 9 I (n+ 1) (n2-  1) 
2n- 1 

2n(n+l)(n+2)vO, , -  

Z k n  = c0n(n+l) (n+2)qO, , .  (20)  

Substituting (18)-(20) into (12)-( 14) further leads to the relations between p",, 
vkn, &n and phn, V L n ,  qhn as 

phn = ~ ~ [ 2 n ( 2 n - l ) ( n + 2 ) w ~ ~ - ( n ~ - l ) p 0 , ~ ] ,  (21) 

(n2 - 1 )  
2(2n- 1 )  

= Ko[n(n + 2)  vkn - pO,nI? 

Once the boundary-valued problem for flow external to  a sphere has been solved, 
the frictional force I; and the torque T, (about the sphere centre) experienced by the 
sphere can be calculated. As shown by Sone & Tanaka (1980), the Knudsen solution 
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does not contribute to the total force acting on the sphere. Following their line of 
proof, it can be shown that the Knudsen solution does not contribute to the total 
torque acting on the sphere either. Therefore, the Hilbert solution alone is sufficient 
for the purpose of calculating F and To. According to the formulae given by Happel 
& Brenner (1986), taking into account t)he contributions from both zero-order and 
first-order Hilbert solutions, we have 

F =  F k + K F &  = -47c,up0,1aV[rYm1(tl,q5)]-47cK,up~1aV[rYm1(0, #)I, (24) 

T = TR +KT& = -87cp~q0,~ a2V[rYm,(8, $)I - 8nK,uqkI azV[rYml(8, q5)]. (25) 

We now apply the general theory described above to two special cases in which a 
solid sphere is moving translationally or rotationally in an unbounded fluid otherwise 
a t  rest. Then, we apply the above results to the two-sphere problem. 

and 

3. Translation and rotation of a single sphere in a slightly rarefied gas 

velocity I J .  
Case 1. A sphere with radius a is moving in the positive z-direction with a uniform 

From the boundary conditions for the zero-order Hilbert solution given by (5 ) ,  we 
have 

Substituting (26)-(28) into (12)-( 14) yields 

P k n  7 guamo S n l ,  

vkn  = @dmo 

= 0. 

Therefore, from (8), the zero-order Hilbert solution of the velocity field is 

Note that the zero-order solution is the well-known Stokes velocity field for no-slip 
boundary conditions. 

To obtain the Knudsen-layer correction we substitute (29)-(31) into (21)-(23) to 
give 

(33) 

v f n  = anl, (34) 

qk, = 0. (35) 

Substitution of (33)-(35) into (8) gives the first-order slip correction for the Stokes 
velocity field as 

u~ = KO [ S ~ U V  ( Ip) + &UV cos 8 + -- u cos tlr . 

Case 2. The sphere is rotating in a counterclockwise direction about the z-axis with 
a fixed angular velocity Q. Thus, with the boundary condition uk = 52 x ro on the 

(36) 1 cos 8 3 a  
2 r2 
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surface of the sphere, where ro is the position vector of a point on the sphere surface 
relative to  the centre of the sphere of radius a, we have 

p k n  = 0, (37) 

V k n  = 0, (38) 

&n = aQ8mo S n l j  (39) 

which gives the zero-order Hilbert solution of the velocity field as 

u& = a3QVx -cosB , i; 1 
Proceeding as in Case 1, from (21)-(23) we obtain 

P&= = 0, (41) 

V k n  = 0, (42) 

qhn = 3KoaQamo an17 (43) 

which leads to the first-order Hilbert solution of the velocity field as 

From the force and torque equations (24) and (25) and the results in (29), (33), (39) 
and (43) we can also compute the force acting on the sphere from the first case and 
the torque from the second case as 

f; = - 6 ~ p a [ l  f KK,] u, (451 

and T, = - 8Zpu3[ 1 + 3KKo] Q. (46) 

Both these expressions collapse to continuum hydrodynamic results for K = 0 (cf. 
Happel & Brenner 1986). Since K~ < 0, both the force and torque acting on the sphere 
are reduced owing to small but finite K .  Equation (45) for the force acting on the 
particle has been previously given by Sone & Aoki (1977) and has been shown to give 
good agreement with experimental values a t  small Knudsen numbers and where the 
diffuse microscopic boundary condition is expected to hold (Brock 1980). The result 
for the torque acting on the particle given by (46) is believed to be new. 

4. Hydrodynamic interaction of two unequal-sized spheres 
In  the following, the hydrodynamic interaction between two unequal rigid spheres 

which translate or rotate in an arbitrary manner in an unbounded fluid will be 
studied. The hydrodynamic interaction here refers to  the mutual influence of the two 
bodies via the fluid. I n  other words, the relations between the force and torque that 
the fluid exerts on each sphere and the velocity and angular velocity of each sphere 
will be studied. The distinction between our study and the previous works on the 
same subject lies in that the dynamics in the Knudsen-layer region is investigated 
and its correction to the continuum hydrodynamic solutions is taken into account. 

A precise definition of the interactions to be studied is as follows. Two rigid 
spheres, labelled sphere 1 and sphere 2, are immersed in an unbounded fluid 
characterized by a uniform velocity field U(r)  = Uo + 0, x r in the absence of the two 
spheres, i.e. a superposition of a uniform field and rigid body rotation. Sphere a 
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(a = 1 or 2 )  has radius a, and its centre is at r,; it has an angular velocity 0, and 
its centre has translational velocity U,. The force the fluid exerts on sphere a is I;, 
and the torque on sphere a relative to its centre is T,. 

4.1, The resistance matrix 
If the specified quantities are the translational and angular velocities of two spheres 
and the velocity of the ambient flow, one can evaluate the forces and torques exerted 
by the fluid on the spheres. On account of the linearity of the Stokes equations, the 
above pairs are linearly related according to 

4 1  A12 8 1 1  B 1 2  U1-Uo 

4 1  B22 c21 c22 %-Qo 

(47) [:I=’[ ty: A22 B12 8 2 1  C,, $:] [:I:]’ 
The square matrix is the resistance matrix, whose elements depend on the 

geometry of the system only and obey a number of symmetry conditions. 
Based on Onsager’s reciprocal relations via the thermodynamics of irreversible 

processes, Landau & Lifshitz (1980) have proven the symmetry of the resistance 
matrix. Since the usual equations of fluid dynamics are never invoked in their proof, 
the conclusion should hold for more general boundary conditions than no-slip 
boundary conditions. Also Bedeaux, Albano & Mazur (1977) provide a general proof 
of the symmetry of the resistance matrix with arbitrary slip boundary conditions 
based on hydrodynamics. 

In addition to its being symmetrical, further symmetric properties are brought to 
the resistance matrix because of the fact that the system of two spheres is 
geometrically a body with rotational symmetry about the line of centres. Brenner 
(1963, 1964) shows that for such a system, each tensor in the resistance matrix can 
be reduced to an expression containing a t  most two scalar functions. Choosing the 
vector I = r2 - rl along the positive z-direction in Cartesian coordinates and denoting 
the unit vectors along positive x-, y- and z-directions by f, j and f ,  respectively, the 
structure of these tensors determined by Brenner can be illustrated by dyadics as 

Finally, by observation of the two-sphere geometry, the sphere labels 1 and 2 on 
the tensors’ elements are interchangeable. Explicitly, if the sphere label changes from 
01 to 3-01 any element in these tensors E,, which is a function of a,, a2 and I only, 
obeys 

In summary, after applying all the above-mentioned symmetry conditions, the 
task of a complete determination of the resistance matrix reduces to an evaluation 
of ten scalar functions, which can be conveniently chosen as: Xfl, Xi l ,  Yfl, Yil ,  Yfl, 
YFl, Xyl, Xgl, Yyl and Y&. 

The method of reflections is used to determine the resistance and mobility matrices 
of the two-sphere problem. This method has the advantage of providing results with 
transparency and in a convenient form for further use in applications. The results 
gained from this method are reported to be numerically accurate for all but the 
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nearest distances, and therefore should suffice for most applications (Jeffrey & Onishi 
1984 ; Felderhof 1977). Anyway, the small-Knudsen-number expansion formulae 
assumed here will not hold at  close interparticle separation distances (overlapping 
Knudsen layers on the two particles). 

In order to apply the method of reflections, the two-sphere system is described by 
two sets of spherical coordinates (ra,O,, 4) (a = 1,2) shown in figure 1. The 
transformation rules between these two coordinate systems are (Hobson 1931) 

(52) 

(53) 

(54) 

r, = [r3-, - ( - 1 )"z cos o3-~] f3-, + ( - 1 j a ~  sin 03-, S3-,, 
r: = rip, + l2  - ( - 1),2r3-, 1 cos 03-,, 

where i, and 8, are the unit vectors in the coordinate directions. 
The Hilbert velocity field outside the two spheres is uH = uR+Kul,. While 

applying the method of reflections (Happel & Brenner 1986), U& consists of two parts 
u& = dH(l)  + u&(2), where u&(a) is given by (8) in the coordinates (ra,  O,, 4) and the 
coefficients there are labelled by a aspkn(a), w",(a) and (1",,(a). For clarity, the three 
scalar quantities introduced in (9)-(11) are also labelled by a as Xk,(a), Y&,(a) and 
Z",(a), corresponding to the boundary conditions on the surface of sphere a. 
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In  an exact manner, using the general expression for uk(1)  and uL(2) given by (8) 
in conjunction with the transformation rules in (52)-(54), the coefficients &,(a), 
7&,(a), q6,,(a) and the quantitiesSL,(a), !P&,(a), ZS,,(a) are linked by the following 
equations : 

n + l  
(n+1)(2n+1)vsmn(a)---9,,(Cz) 2 

2n+ 1 ns(n + s -2ns- 2) -mm2(2ns-4s-4n+ 2 )  
2n- 1 242s-  1) (n+s) 

+- pS,s(3 - a) 5E-l <:-a 

Here the notation = (aa/Z) has been introduced. The quantities X",(a), Ykn(a) 
and Z;,(a) in (55)-(57) are given by the boundary conditions satisfied by uk on 
sphere a through (9)-(11). Equations (55)-(57) will be useful in the calculation of both 
resistance and mobility functions under slip boundary conditions. Although (55)-(57) 
cannot be solved exactly, they can be approximately solved by appealing to the 
method of reflections as described below. 

Now, slightly modifying Jeffrey & Onishi (19841, we introduce the following double 
powcr series expansions of the coefficients pLn(a), v",(a) and qLn(a) : 

0 3 0 0  

p s , ~ ~ )  = gK;( - 1 ) 3 - 7  - i ) (n+m)(a - i )u  c c P:,,(&) 5: ~ p - ~ ,  (58) 
p = o  q-0 

m m  

a",(.) = iK: ( -1 )3 -a ( - i ) (n+m)(a -1 )u  c c npq  ( a ) p p  a 3-a' (60) 
p=o q=o 

It can be shown that the expansions (58)-(60) will result in recurrence formulas of 
P$,,(a), V",,,(a) and QiPq(a)  valid for both zero-order and first-order quantities in the 
K-expansion. Setting the right-hand sides of (55)-(57) to zero as dictated in the 
method of reflections procedure and substituting the expansions (58)-(60) into 
(5.5-(57), then equating the coefficients of the same power of t, and 53-a, the 
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following recurrence relations for the pure numbers P;,,(a), Vi,,(a) and &i,,(a) can 
be derived: 

ns(n  + s - 2ns - 2 )  - rn2(2ns - 4s - 4n + 2 )  
X s (n  + 8 )  (2s - 1) P:(q-s)(p-n+1)(3-") 

As long as the initial values of these pure numbers P",,,(a), Vi,,(a) and Qipq(a) are 
given, the remaining values can then be readily evaluated on a computer through the 
simultaneous solution of (61)-(63). To obtain the initial values of the pure numbers 
P;,,(a), V",,,(a) and Qip,(a),  we must set all the coefficients pk , (3-a) ,  ~ k ~ ( 3 - a )  and 
qks(3-a)  in (55)-(57) to zero and substitute the expansions (58)-(60) as well as the 
expressions for X&,(a), !?'&,(a) and Zk,(a) into (55)-(57) as dictated by the initial 
boundary conditions in the method of reflections procedure. Then equating the 
coefficients of the same power of Ea and (3-a  leads to the initial values for PL,,(a), 

A special discussion is needed, however, concerning the slip boundary conditions 
satisfied by the first-order Hilbert solution in the case involving a two-sphere system. 
Generally, these boundary conditions are determined by the zero-order Hilbert 
solutions. Note that the zero-order Hilbert solution u& consists of a sum of two parts, 
i.e. u& = u&(1) +uR(2). The contributions to the boundary conditions satisfied by u& 
on sphere a from the part u&(a) can be readily obtained from (18)-(20). The part 
u&(3-a),  however, must be converted into the ( ra ,Oa,$)  system first, then, by 
applying a similar but more lengthy procedure as the one used to derive (18)-(20), 
its contributions to the boundary conditions for uh on sphere a can be derived. 
Adding the contributions from these two parts together completes the derivation of 
the boundary conditions for uh on sphere a. As a result, the three scalar quantities 
Xh,(a), !?';,(a) and Zk,(a) are given in terms of the coefficients p",(a), &,(a) and 

v z p q ( 4  and Q i p q ( 4 .  
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-v0, ,(3-a) 2n(nZ-l)(n+ l)fl,"-'[;';-p",(3-a) n%+ 2) [-+l[;-a 
(en + 3) 

(n2- 1 )  [ns(n+ s - 2ns - 2) - 2myns- 2n-2s+ l)] n+l , 
-P0,,(3--a) s(2s- l ) (n+s)(2n-l)  [a 

Note that in the small-Knudsen-number analysis of the two-sphere problem, the 
characteristic length is taken to be the radius of the smaller sphere (a ,  < az) .  Thus, 
the inclusion of the factors in (65) and (66) is the result of the definition of 
the Knudsen number as Kn = h/al.  

Following the zero-order procedures, (64)-(66) can be used to give the initial values 
of the pure numbers P;,,(a), V;,,(a) and Q;,,(a), which are needed to carry out the 
iterative computations in (61)-(63) ,  in terms of the pure numbers PO,,,(a), v",,,(a) 
and &:,,(a) as 

n(2n- l ) ( n + 2 )  
(2n+ 1 )  V",pqCa) 

P&,(a) = - (n2- 1)  PO,,q(a) + 

where the superscript i denotes that these quantities are referring to initial values. 
In  order to determine the ten scalar functions in the resistance matrix, it is 

sufficient to consider four different cases, where sphere 1 is assumed to move 
translationally or rotationally and sphere 2 is at rest. 

Case (i): In  order to evaluate Xf: and Xtl, sphere 1 is assumed to move in the 
positive z-direction with a uniform velocity U and sphere 2 is at rest. 
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Applying the results in (29)-(31) in conjunction with the expansions (58)-(60), we 
have 

m = 0, (70) 

e L o o ( 1 )  = dl,, (71) 

Eoo(1) = 4 m  (72) 

S",O( 1 ) = 0, (73) 

which will initiate the iterative calculations in (61) and (62). After obtaining the 
values of PO,,,(a) and V",,,(a) as the results of the iterative calculations, they are used 
to provide the initial values of the first-order quantities P;,,(a) and V;,,(a) through 
(67)-(69). Then, again, the iterative calculations in (61) and (62) are carried out for 
the first-order quantities. 

The expansion (58) gives the values ofp;,(a) and ptl(a), which determine the forces 
experienced by sphere 1 and sphere 2 through (24). According to the definition of the 
resistance matrix the functions Xf1 and Xtl are found to be 

m o o  

xfl =-667ca1 c c [ p y p Q ( i ) + K K O P : p q ( l ) l E P E ~ ,  

Xt1 = - 6 ~ ~ 2  Z E [J'ypq(2) + K K O J ' : ~ ~ ( ~ ) ]  Eg f?. 

(74) 

(75) 

p-0  Q-0 

m o o  

and 
p-0 q-0 

For the purpose of applications, only a certain finite number of terms needs to be 
retained in (74) and (75). I n  this presentation, we limit the degree of approximation 
to p+p < 11,  which should be sufficiently accurate up to the point of overlapping 
Knudsen layers on the two spheres. To this extent the results for Xfl and Xf1 are 

x;: = - 6xa,{[l+ 451 5 2  - $5; 5 2  + %; 5; + it1 E;+ $5; 5 2  + %5? 5; 
3 0 3 5  3 m 4  4 6; + x 5 1 5 2  + 256 61 (2 + %; 6; + [:+ %El ti + 

1131 3 5 243 2 6 + =El 5 2  + -51 5 2  + %51G + 45; ti + YE; 6; +WE! 5: 
+ m 5 1  5 2  + T 5 1  5 2  + d l  5 2  + a51 5 2  + t5153 + K K 0 [ 1  + $5; 
+!El 5 2  - %? + ??5; 5 2  + 9 5 ;  5; + ;El 5; + it-! + YE! 5 2  

115849 5 5 4761 4 6 1227 3 7 81 2 8 

1383 4 2 929 3 3 333 2 4 1161 6 2 + T E l  5 2  + i d 1  6 2  + T 5 1 5 2  + !El 5: + f5: 5 2  + 7 5 1  5 2  

and 

(76) 
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- 3 5 5  5 2  - ""'54 53 - se553 5 4  - 88552  5 5  - '6475 5 6  - 2 5 7  - 2 5 7  5 2  
2 2 1  32 2 1  8 2 1  8 2 1  32 2 1  2 1  2 2 1  

2277 6 3 7657 5 4 219327 4 5 219327 3 6 7657 2 7 - T 5 2  51 - x 5 2  51 - T 5 2  51 - T 5 2  51 - x 5 2  51 
32 2 1 2 2 1  32 2 1  T 5 2  51 

- - T a r 5 2  51 - r 5 2  51 - 75i2-52 51 - 7 5 2  51- 2% Go 
- ;5:'1>- (77) 

- 22775 5 8  
- $69 5 2  -280758 53 -y(; 5; - 554109 6 5 

1901547 5 6 1901547 4 7 554199 3 8 1671 2 9 

The appearance of a negative exponent in (77) is not erroneous. Note that after 
being multiplied by the two factors - 6 % ~ ~  and K K ~ ,  (77)  contains no negative 
exponents. 

Case (ii): I n  order to  evaluate the functions Y;",, Y&, YF1 and Yfl, sphere 1 is 
assumed to move in the positive x-direction with a uniform velocity U and sphere 2 
is a t  rest. 

m =  1, (78) 
P%o(1) = (79) 

In this case, 

The non-axisymmetrical nature of this case requires that the iterative calculations 
in (61)-(63) be done simultaneously. Besides the forces experienced by the two 
spheres as obtained in the same manner as in case (i), the resulting values of &(a) 
and &(a) will determine the torques experienced by the two spheres through (25). 
Thus the functions Yfl, Yfl, Yfl a,nd Yfl are found to  be 

m m  

= z [ ~ p Q ( l ) + K K O P : p q ( l ) l  Ef E:> (82) 

= 67ca2 x 2 [ p ? p , ( 2 )  + K K O P : p Q ( 2 ) 1  5: t?, (83) 

p-09-0  - 
m m  

P-0  Q-0 

m m  

'?I =-8xa:  c [ & ~ p , ( 1 ) + K K O & : p Q ( 1 ) 1 5 1 p 5 : >  (84) 

and = -8nai z x [ & ? p Q ( 2 ) + K K 0  &ipQ(2)l  [:[?* (85) 

p=O Q-0 

m m  

p=O Q-0 

The results of our calculations give 

+ -5; 5; + $6; 5; + it1 5: + %5! 6; +Ex: 5; + -6: 5; 

+ -5162 + m 5 1 5 2  - mi51 52 + d l  5 2  + c51 5 3  + K K O [  1 
10548393 5 5 67617 4 6 351 3 7 243 2 8 

28407 6 2 330897 5 3 613125 4 4 7659 3 5 495 2 6 + - ? i d 1  5 2  + m E 1 5 2  + -5miT5152 - %id-1 5 2  + m51 5 2  + f516; 
5 2  + X m i T 5 1 5 2  + m W 5 1 5 2  + i i m m 5 1 5 2  + TZmF51 52 

65043 8 2 161343 7 3 96864141 6 4 57610107 5 5 + 
328257 4 6 15201 3 7 1377 2 8 + m 5 1 5 2  - m 5 1  52 + T 5 1 6 2  +%I 5312 
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Yfl = 6%([$61+ $5; El + 2 5 2  5: +it; + 5; + 8%; 6; 
1053 4 3 19083 3 4 1053 2 5 + 2252 5: + i5i 5: + m 5 2  El  + m 5 2  51 + m 6 2  61 + i 5 2  5: + :5; 6; 

+ it; 5; + 25662 51 + m 6 2  61 + m i d 2  51 + -62 61 

+it; El + $ i t 2  5; +$i5; +it;% +gt; 6; +%it; t; + -52 t; 

+ i5: +it; 5; + 3 3 - 6 2  E l  m 6 2  51 + - m i d 2  51 + m d z  61 

+ m i d 2  5, + m i m T 5 2  61+ m m T 6 2  61 + -62 61 

+ 56166 53 + -(554+766179 60443 4 5 60443 3 6 567 2 7 + 3  
256 2 1 16384 2 1 ~ 5 2 6 1 + ~ 6 2 6 1 + ~ 6 2 ~ 1  8 6 2  6; 

891 8 3 22071 7 4 2744505 6 5 95203835 5 6 

2 7 4 4 5 0 5 t 4 5 7  2 2 0 7 1 6 3 [ 8 + m 6 2 6 9 + 2 5  6 ] 3 -1 2 
262144 2 1 4096 2 1 256 2 1 8 2 i0 + K K O [ % l + d 2  61 

10071 4 3 40143 3 4 ; 4 0 1 4 3 5 2 5 5 + 1 0 0 1 1 g  5 6  
+ ~ 5 ~ + ~ 6 i 5 ; + ~ 6 2 5 1 + ~ 5 2 5 1  4096 2 1 1024 2 1 

4005 6 3+123947  5 4 9633423 4 5 9633423 3 6 

; 123947f2  6 7  + 40056 6 8  + + 6; + W t 8  5 3  + @U?(7 6 4  4096 $2 1 256 2 1 256 2 1 1024 2 1 

25022877 6 5 439303785 5 6 439303785 4 7 25022877 3 8 

(87) ; 5414762 6 9  + 55Eg 5 1 0  + 46;1]}, 
1024 2 1 256 2 1 

yfl = - sna;{[ - "52 6 - 2 . 6 4  5 - a 5 3  5 2  - 2 .52  53 - m 5 5  6 2  
16  1 2 16  1 2 256 1 2 16  1 2 256 1 2 

8409 4 3 243 3 4 9 2 5-27 7 2 3159 6 3-283041 5 4 
- w 6 1 6 2 - ~ 6 1 6 2 - d 1 6 2  3 2 6 1 6 2 - w 5 1 6 2  -5162 

- w c l  6 2  - 25651 6 2  - id1 5 2  

- 1 0 4 8 5 7 6 5 1 5 2 - ~ 5 1 5 2 - w 6 1 5 2  2 5 6 6 1 6 2 - 5 & 1 & 1  

+KKO[ -it; & - 2.6 6 2  - 2 5 4  5 - 5 2  - W$z 53 - 276 5 4  
1 6 1 2  8 1 2  2 5 6 1 2  1 2 8 1 2  1 6 1 2  

30525 4 5 405 3 6 9 2 7-27  9 2 1701 8 3 614481 7 4 
3 2 6 1  6 2  - n 5 1 f 2  - -61 6 2  

4579497 6 5 536679 5 6 73989 4 7 - 5 6 1  3 8 9 2 9 

243 7 2 
64 61 5 2  - %16; - %dl 6 2  

1323 5 2 28251 4 3 /4667 3 4 - s ?  2 5 - 
6 2  - m 6 l f ; Z  - 4096 51 6 2  

4023 6 3 2132919 5 4 1015641 4 5 185025 3 6 1503 2 7 - m61 5 2  - 3 E s i F 5 1 5 2  - m 6 1 6 2  - m 5 1 6 2  - d l  5 2  

- 636 6 8  6 2  -33+8 53 585692157 5 4  949534566 5 5  
16  1 2 32 1 2 512 1 2 65536 1 2 131072 1 2 

-- 83005533 5 6 5161509 4 7-563283 3 8 639 2 9 
1048576 (1 6 2  --6162 (88) -61 6 2  - = 5 1 5 2  -%I 5i011>9 

and 
2 7 2 2  2 7 4 2  2 4 3 3 3  9 2 4  

el = - - $62 61 - a62 51 - E k - 2  61 - m 5 2  51- i d 2  61 
27 6 2 243 5 3 77451 4 4-aoS 3 5 9 2 6 27 8 2 

51252 6 l - d Z  51 -=52  5 1  -3262  51-%&2 f ; l - m 6 2  51 
- 4 3 6 7 6 3  5 9 5 5 3 5 6 6 4  1125603g555  1 1 0 0 1 6 4 6 6  729 3 7 

128  2 1 8192 2 1 262144 2 1 1024 2 1 - m c 2 5 1  

9 2 8  
- a52 511 + K K O [  - i5; - t 6 2  5 1  - 55; 61 -%ti 5; - %ti 51 

2943 4 2 3033 3 3 9 2 4 - 2 1  7 2133 6 2 255681 5 3 
4 5 2  61 -=62 61 --62 51 -1024 6 2  61 

--<2 61-s-c352 51 - d 2  51 
5 1  -&2 

93651 4 4 3177 3 5 27 2 6-135 9 2403 8 2 65385 7 3 
16  6 2  51--62 61-=62 51 

(89) 262144 E2E2-22525551 5 5 4581 4 6 6255 3 7 9 2 8 15502005 6 4 
262144 6 2  61 -=62 61--62 61 -262 5111' -- 

Case (iii): I n  order to evaluate the functions Xfl and X:l, sphere 1 is assumed to 
rotate with a fixed angular velocity SZ in the positive z-direction and sphere 2 is at 
rest. 

Setting U = a,Q and applying the results in (37)-(39), we have 

m = 0,  (90) 
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C O O ( 1 )  = 0, (92) 

&",o(l) = - i L .  (93) 

Only the recurrence relation (63) is needed in the calculation, and the functions Xfl 
and XFl are given as 

w w  

x-1 = -isna; c z [&~,,(1)+KKO&:pq(l)15f6X1 

El = i8na14 c C l-&;,,@) + K K O  a p * ( 2 ) I  Ef 6:. 

(94) 

(95) 

p-0 9-0 

c o w  

and 
p-0 q-0 

Our numerical calculations result in 

Xfl = - 8 ~ 4 { [  1 + 5; 5; + 36: 6; + 66; ti] +KK0[3 + 35; 5; + 66; 5; 

+ 156; 6; + 186; 6; +426; 6; + 366; till, (96) 
and 

x,C, = 8na,4{[62 6," + 6; 6; + 36; 6: + 36; 63 +K~o[362 6; + 36; + 66; 6: 
+ 65; 6: + 186; 6: + 246; 6; + 425; 6; + 186; (:I}. (97) 

Case (iv): In  order to evaluate Yfl and Y&, sphere 1 is assumed to rotate with a 

Again setting U = a, a, we have 
fixed angular velocity SZ in the positive x-direction and sphere 2 is a t  rest. 

m =  1, (98) 

e 0 J q  = 0, (99) 

Goo(1) = 0, (100) 

Qonoo(1) = - i L .  (101) 

All three relations (61)-(63) are needed for carrying out the iterative calculations, 
and the functions Yfl and YFl are given by 
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and 
y:1 = - 8% a m 2  6; + At-: E; + $5; 6; + 36; 6: + $622 6; + AE; 5: 

+ a 5 5  [4 + 643964 6.5 + 24+3 g6 + 9 6 2  6 7  + 9 4 8  53 + 40+7 6 4  
256 2 1 4096 2 1 256 2 1 16  2 1 16  2 1 256 2 1 

10947 6 518049 5 6 10947 4 7 405 3 8 +& 2 
16625!1 

+ K K O E 2  E: + $6: + :E: 5; + t E 2  5': + it; 6; + %YE; E': + %YE; E: 

+ i f 2  '5: +it; E: + W E 2  El- m E 2  El  + m T i F 5 2  El - 7 i m c E 2  El 
- ~ E 2 5 1 + W 5 2 E l + t E 2 5 ~ o l } .  

+ L?E2 5; + 5; + 2367g5 5 4  + 5X!E(4 c 5  + 6.?23!63 6 6  + 236752 5 7  256 2 1 2048 2 1 2048 2 1 256 2 1 

3465 7 4 3681 6 5 2225127 5 6 2225127 4 7 

(105) 

Note that in this case the forces experienced by sphere 1 and sphere 2 can also be 
obtained through the resulting coefficients p&,,(a) and p&,,(a) just as in case (i) and 
case (ii). It, therefore, provides an alternative way to evaluate the functions Y;l and 
Yfl. The numerical results show that the values of the functions Yfl and Yfl thus 
obtained agree with the ones given in case (ii), as predicted by the symmetrical 
properties of the resistance matrix in the general case with slip boundary conditions. 

We also note the symmetrical properties in the results of Xtl, Y&, X,C, and Y&. 
Owing to  the two-sphere geometry, the expressions for the functions Xfz, Y;",, Xf2 and 
Yf2 can be readily obtained by interchanging the sphere indices 1 and 2 in these 
expressions. The expressions for the functions Xf2, Yf2, Xf2 and Yf. thus obtained are 
shown to be identical to the expressions for Xil, Ytl, XF1 and Y;l, respectively. This 
fact once again is in agreement with the prediction from the symmetrical properties 
of the resistance matrix. 

It is shown that in all four cases studied, in the limit of K = 0, our results recover 
the solutions given by Jeffrey & Onishi as physically expected. 

3681 3 8 3465 2 9 

4.2. The mobility matrix 

If the specified quantities are the forces and torques exerted by the fluid on the 
spheres, inverting (47) gives 

The square matrix is the mobility matrix, which is the inverse of the resistance 
matrix. All the symmetry conditions obeyed by the resistance matrix also hold for 
the mobility matrix. The tensors in the mobility matrix, therefore, can be written as 

(107) 

(109) 

" A  

aap = x$ kk + yz& ii +J), 

cap = x& kk + &( ii+m. 

bmp = Y$(C-JY)j ( 108) 
" 1  

Again, only ten scalar functions have to be evaluated to completely determine the 
mobility matrix, which can be conveniently chosen as: xTl, xil, yfl, yi1, yyl, y:l, xyl, 

The problem raised here is that from the given forces and torques acting on the 
spheres, the velocities and angular velocities of the spheres are to be obtained from 
the solutions of the velocity field. 

x:1* Y L  and Y:l. 
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The mobility functions can be obtained either by an inversion of the resistance 
matrix or by a direct derivation. As indicated by Yoon & Kim (1987), however, there 
are some disadvantages of the inversion procedure mainly caused by the singular 
behaviour of the resistance functions a t  small separations which makes the inversion 
problem ill-conditioned. We have also noticed that the amount of numerical work 
involved in the inversion of the resistance matrix is considerably greater than that 
required in a direct derivation of the mobility functions. Therefore, here we adopt a 
direct method similar to  the one used by Jeffrey & Onishi (1984) to approach the 
mobility problem. In one particular case, where the inversion procedure is relatively 
easy, we also perform the inversion of some of the resistance functions to  verify, in 
part, the direct method. 

In  the resistance matrix problem, the given velocities and angular velocities of the 
two spheres are related only to  the zero-order Hilbert solution of the velocity field; 
the first-order Hilbert solution being subsequently determined from the zero-order 
solution. In  the mobility matrix problem, on the other hand, the given forces and 
torques are coupled to both the zero-order and first-order Hilbert solutions of the 
velocity field. This feature requires a somewhat different approach to the calculation 
of the mobility matrix from the one used to calculate the resistance matrix. 

For the purpose of calculating the mobility matrix, some special cases will be 
chosen, where a force (or a torque) in either the x -  or x-direction is acting on sphere 1 
and no force or torque is acting on sphere 2. In  such cases, from the symmetrical 
properties of the mobility matrix, the velocities and angular velocities of the spheres 
will be in the direction of one of the axes in Cartesian coordinates. Furthermore, they 
are found to be related to the three scalar functions in (55)-(57)  by 

Xk,(a) = U(a)4&,,  (110) 

Yom,(a) = 0, (111) 

-%,(a) = 2aaQ(a) &,I, (112) 

where U ( a )  and Q(a) are the magnitudes of the velocity and angular velocity of 
sphere a,  respectively, and m = 0 or 1 depending on the direction of the velocity or 
angular velocity. 

Substitution of (1 lo)-( 112) into the right-hand sides of (55)-(57)  will eliminate the 
three scalar functions from (55)-(57) and lead to general relations between the zero- 
order Hilbert solution of the velocity field and the velocities and angular velocities 
of the spheres. 

Next, in order to determine U(a)  and Sl(a), the following double power series 
expansions are needed : 

m o o  

U(a)  = ( -  - l ) ( l+m)(a- l )U X I: UpQ(a)  c: (113) 
p=O Q=O 

rT m m 

where U is a quantity of the dimension of velocity defined in terms of the given force 
or torque acting on sphere 1 as follows. 

If the given quantity is a force with magnitude F acting on sphere 1, U is defined 

(115) 

as 
F u = --; 

6wa1 
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if the given quantity is a torque with magnitude T acting on sphere 1,  U is defined 

T as 
U = - -  

83rpa;. (116) 

Substituting ( 1  13)-( 114) into (55)-(57) with the right-hand sides replaced by U(a)  
and Q(a) from (110) and (1 12), then equating the coefficients of the same powers of 
E, and <3-a, we obtain the following relations. 

For n = 1. 

(118) 

Note that the recurrence relations (61) and (63) do not apply to the case of n = 1 
with 6 = 0; instead we have relations (117) and (118). 

The initial values needed for carrying out the recursive computations in (61)-(63) 
are provided by the prescribed values of the force and torque, as explained below. 

There are two basic cases to be considered depending on whether the given 
quantity is a force or a torque. In case I, the prescribed quantity is a force F in the 
z- or x-direction acting on sphere 1 and there are no other forces or torques acting on 
either one of the spheres. According to (24) and (25) we have 

Substituting the double series expansions of pLl(a)  and p",,(a) in (58) and (60) and 
the quantity U defined in (115) into (119)-(122), then equating the coefficients of the 
same powers of and t3-,, we have the following relations referring to the initial 
values that are to be used for the recursive computations in (61)-(63) : 

In case 11, the prescribed quantity is a torque T in the z- or x-direction acting on 
sphere 1 and there are no other forces or torques acting on either one of the spheres, 
which leads to 
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The same substitutions as before lead to the following relations : 

Py,,(a) + KoKP:,,(a) = 0 (a = 1 ,  a), (130) 

Q ; p q ( l ) + K O m : p q ( ~ )  = -is,o4Jo, (1311 

(1321 Q?pg(2) + ~oKQipq(2) = 0. 

From (117) and (118) it is clear that  the determination of lJ,,(a) and Q,,(a), and 
therefore the mobility functions, relies on the determination of the coefficients 

However, unlike the resistance matrix problem, the known conditions for the 
coefficients P,,,(a), P,,,(a) and QO,,,(a) are coupled to those for the coefficients 
P;,,(a), V;,,(a) and &kpq(a) through (123)-( 125) or (130)-(132). Although this 
coupled problem can be rather involved, as given below, we developed a simplified 
procedure that starts from a decomposition of the coefficients P,,,(a), v",,,(a), 
QO,,,(a), P;,,(a), Vk,,(a) and Q;,,(a) to different orders of the Knudsen number, Kn, 
in a power series expansions of K ,  allowing us to decouple the problem to a great 
extent. 

In the small-Knudsen-number analysis, the mobility functions, like the other 
physical quantities, being expanded in power series ofK, consist of terms of order 1 
(KO) and order K .  Therefore, the coefficients PO,,,(a), v",,,(a) and QO,,,(a) inevitably 
consist of terms of order 1 and order K, as well. Actually, this physical consideration 
manifests itself through (123)-(125) in case I or (130)-(132) in case 11. Equations 
(123)-(125) show that, for example, the initial values of PO,,,(a) and QO,,,(a), and 
therefore the coefficients P,,,(a), v",,,(a) and QO,,,(a) themselves, must contain parts 
of order K as well as of order 1 otherwise these conditions cannot be met. 

PO,,,(a), v",,,(4 and & O , p * ( 4 .  

As a result, we write these coefficients as 

PB,,,(a) = P:;:(a) +e;)q(a) ,  (133) 

V",*(a) = V$;;(a) + V$;;(a), (134) 

&6,,,(a) = Q$;\@) + Q$;!@), (135) 

where one more superscript (0) or ( 1 )  is added to distinguish the parts of order 1 and 
order K .  

The numerical calculations start from the calculation of PO,!h(a), v"Lih(a) and 
Qon(i(a), whose initial values are derived from (26)-(29) in case I or from (130)-(132) 
in case I1 as 

case I: 

case 11: 
Pyg(a) = 0 (a = 1,2),  (139) 

&y$;(2) = 0. (141) 

Q:g;(l) = -i& PO S PO' (140) 

Using these initial values in the recurrence relations (61)-(63) and carrying out the 
recursive computations, the entire set of coefficients P;$h(a), T70n(k(a) and Q;$;(a) are 
obtained. Note that (61) and (63) are only used under the condition n > 1. 
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The results for PO,$L(a), Pkih(a) and QO,$i(a), which are quantities related to the 
zero-order velocity field, are used to provide the initial values of the quantities 
Pi$i(a), Vk$',"b(a) and @$;(a), which are quantities related to the first-order velocity 
field, through (67)-(69). Note that these two groups of coefficients all belong to  zero- 
order quantities in the K-expansions, and therefore should be related in such a way. 
Then the recursive computations in (61) and (63) are carried out to obtain the entire 
set of coefficients Pk$i(a), Vh$,'(a) and Qi$i(a). Actually, the procedure described 
above is the same as in the calculations of the resistance matrix from the coefficients 
PO,,,(a), V",,,(a) and &O,,,(a) to the coefficients Phpg(a), ViPg(a)  and &:,,(a). 

The initial values of egi(a) ,  ?!;(a) and &'$;(a) are related to the resulting values 
ofPipi(a), V:Fi(a) and Q:p;(a) through (123)-(125) in case I or (130)-(132) in case 11. 
Both cases lead to the same relations: 

P!Fi(a) = -KoKP;p;(a) (a  = 1,2),  (142) 

and Q!gi(&) = -KOKQ:Fi(a) (a = 1,2). (143) 

Again, these initial values are used to carry out the recursive computations in 
(61)-(63) (with (61) and (63) only used when n > 1 )  to obtain the coefficients Pk(ib(a), 
%'$(a) and Qi$i(a). Then (133)-(135) give the values of PO,,,(a), v",,,(a) and 
&O,,,(a), which are used to calculate the quantities U,,(a) and SZ,,(a) through (117) 
and (118). 

I n  order to determine the ten scalar functions in the mobility matrix, it is sufficient 
to consider four different cases, which are to be introduced and treated in the 
following. - 

Case (i) : In  order to evaluate the functions XL and x ; ~  a force P in the positive z- 
direction is assumed to act on sphere 1 and no force or torque is acting on sphere 2. 

This is an axisymmetrical case with m = 0. Equations (136)-(138) provide the 
initial values to start the iterative calculations. After carrying out all the iterative 
calculations described above, we obtain the values of the coefficients PO,$h(a), c $ i ( a ) ,  
Pt(&(a) and v0n(i(a) (all the coefficients Qnpq vanish). Then the velocities of sphere 1 
and sphere 2 are determined through (1 13) and (1  17)  with the coefficients PO,,,(a) and 
P,,,(a) expressed by (133) and (134). 

The definition of the mobility functions leads to the following expressions for zyl 
and x ; ~ :  

(144) 
1 m m  z z Upg(1)6?6& xa =-- 

11 
6 9  p-0  9-0 

and 
4 m m  

(145) 

As discussed in the resistance matrix case, only a certain finite number of terms 
needs to be retained in (144) and (145) and we limit the degree of approximation to 
p+q < 11. To this extent, the numerical results of our computations give the 
functions xFl and x:l as 

1 
Xa {P - YE1 6; +vt: 6; - 25, E; -YE; 6; + Y6; 6; -!El 6; 

- a 5  z 5 i 5 , - ~ 6 ~ : ' : ~ + 3 0 6 : 5 ~ - ! 5 i 5 ~ 1 - K K o [ 1 + T ~ i E z - - i - 5 i 5 z  5 

l1 - 6na1 
4 5 2 2  4 5 4 2  
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1 
6aa1 Xfl = -- {[;El- it; 51 - it; + %; 5: - YE; 5: 
1 5 3 6  1 5 7 4  4 5 3 5 6  1 5 3 8  225 3 4 - T 5 2  51 + T 5 2  E l  - 2 - 6 2  El + T 5 2  511 --KK0[52 5; + 5; - T 5 2  51 

- 7 5 2  5, + T 5 2  51 + a 5 2 5 1  + a 5 2  51 + a 5 2  51 - l i -52  El 

- T 5 2  5 1  + 7 5 2  51 + 7 5 2  61 - T 5 2  5, - T 5 2  511>. 

2 2 5 2 5  4 5 5 4  7 5 4 5  7 5 3 6  4 5 2 7  4 5 7 4  

(147) 
105 6 5 2265 5 6 2265 4 7 105 3 8 45  2 9 

Case (ii): In  order to evaluate the functions yyl, yfl, and yil, a force F in the 
positive x-direction is assumed to act on sphere 1 and no force or torque is acting on 
sphere 2. 

In  this non-axisymmetrical case, m = 1 and (136)-( 138) provide the initial values 
for the iterative calculations. These calculations give the values of P,',Ok(a), %$:(a), 
Q0(O)(a), npq Pi$b(cr), Piik(ct) and Qi(ih(a), which are used to determine the velocities and 
angular velocities of the two spheres through (1 13)-( 114), (1 17) and (1 18). 

Then the functions yyl, yfl, y!l and yil can be expressed as 

and 

Our numerical results give 

1 {[ 1 -q 5 5  A 5 5  53 + '53 5 5  - 35 5 7  - 9 5 ;  5; 
1 6 1 2  4 1 2  8 1 2  8 1 2  

yyl = -- 
6aa1 
2.7 3 7 8 5 2 4  1 5 6 2  + 3-5152 - Q6153 -KKo[1+ d l  5 2  + T51 5 2  + 56; 5: -% 5: 

- a51 5 2  + 3-51 5, + d l  5 2  + 2-61 5 2  - 7 5 1  5 2  - T51 5 2  

+ T 5 1 6 2 1 1 1  

9 3 5  6 3 2 6  5 2 5 6 4  1 0 5 5 5  1 8 9 4 6  2 7 3 7  

(152) 
8 1  2 8 

105 7 4 245 6 5 2765 5 6 2765 4 7 - K K O K  5; + $5; + 7 5 2  51+ 7 5 2  51 - -52 61 - id, 51 
(153) 

245 3 8+m 2 
+ 7 5 2 5 1  8 625!1>3 

9 2 9  45 5 2-15 4 3 45 3 4 525 5 4 105 4 5 
- d l  5 2 1  - K K O  [ - 751 5 2  a51 5 2  - G51 5 2  - T51 5 2  - 751  5 2  

- 361 5 2  - 2-61 5 2  -?El 5 2  - G5l 5211,  (154) 
6 3 3 6  4 4 1 5 6  6 3 4 7  8 1 3 8  
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and 

105 6 4 75 4 6 315 6 4 525 5 5 375 4 6 225 3 7 
1 

6na1 a, G . 6 2  El + i d 2  El - B E 2  Ell - K K o [  - W E 2  E l  - K E 2  El + K E 2  E l +  mE2 Ell>. g1 = -___ 

(155) 
Case (iii) : I n  order to evaluate the functions xEl and xil, a torque T in the positive 

z-direction is assumed to act on sphere 1 and no force or torque is acting on sphere 2. 
I n  this axisymmetrical case, m = 1 and all the coefficients Pnpq and V,,, vanish. 

The initial values for iteration are given by (140) and (141). The functions xE1 and xil 
can be expressed as : m m  

and (157) 

The numerical results are 

and (159) 

In  this particular case, as mentioned a t  the beginning, we can also readily carry 
out an inversion process from the results of the resistance functions to derive these 
mobility functions by invoking the following relation (Kim & Mifflin 1985) : 

ZE1 XE2 x,c, X &  -l L1 X L I  = [X-P X J  
The results for the mobility functions xi1 and xgl derived from these two different 
methods turn out to be in agreement within the limit of p + q  d 11 in the double 
power series expansions. 

Case (iv) : In  order to evaluate the functions y;l and ygl a torque T in the positive 
x-direction is assumed to act on sphere 1 and no force or torque is acting on sphere 2. 

In this case m = 1 and (139)-(141) give the initial values for iteration. The 
functions y;l and ygl can be expressed as 

and 

The numerical results are 
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Kn = 0 A(1) 
Z/a (exact) 

2.0 1.5500 
2.1 1.5363 
2.6749 1.4862 
3.0 1.4320 
4.0 1.3472 
6.0 1.2427 
8.0 1.1847 

K n  = 0.01 
l / a  A d )  

2.0 1.6363 
2.1 1.6173 
2.6749 1.5185 
3.0 1.4726 
4.0 1.3687 
6.0 1.2545 
8.0 1.1946 

Kn = 0.1 
l / a  A3(0 

2.0 1.7376 
2.1 1.7158 
2.6749 1.6080 
3.0 1.5597 
4.0 1.4522 
6.0 1.3363 
8.0 1.2760 

Kn, = 0.5 
l l a  A d )  

2.0 2.1879 
2.1 2.1538 
2.6749 2.0059 
3.0 1.9466 
4.0 1.8237 
6.0 1.6998 
8.0 1.6376 

A&) 
1.6250 
1 A063 
1.5085 
1.4630 
1.3594 
1.2454 
1.1855 

A7(1) 
1.6289 
1.5894 
1.4796 
1.4429 
1.3568 
1.2518 
1.1937 

‘470) 
1.681 1 
1.6582 
1.5716 
1.5340 
1.4428 
1.3342 
1.2753 

A7(4 
1.9133 
1.9641 
1.9802 
1.9388 
1.8252 
1.7006 
1.6379 

A,V) 
I .623 1 
1.5817 
1.4694 
1.4328 
1.3472 
1.2427 
1.1847 

All (0  
1.5353 
1.5352 
1.4765 
1.4423 
1.3568 
1.2518 
1.1937 

All (4  
1.6722 
1.6537 
1.5717 
1.5342 
1.4429 
1.3342 
1.2753 

All(4 
2.2803 
2.1801 
1.9948 
1.9426 
1.8253 
1.5755 
1.6379 

All (0  
1.5201 
1.5221 
1.4660 
1.4320 
1.3472 
1.2427 
1.1847 

B,(O 
1.4476 
1.421 1 
1.3160 
1.2779 
1.2045 
1.1364 
1.1038 

B,(O 
1.5388 
1.5109 
1.4013 
1.3619 
1.2868 
1.2178 
1.1850 

B3(0 
1.9441 
1.9100 
1.7803 
1.7355 
1.6526 
1.5797 
1.5459 

BV) 
(exact) 

1.3799 
1.3918 
1.3029 
1.2668 
1.1950 
1.1273 
1.0947 

B7(0 
1.4295 
1.4073 
1.3123 
1.2758 
1.2039 
1.1363 
1.1037 

B7(4 
1.5072 
1.4847 
1.3903 
1.3544 
1.2838 
1.2169 
1.1846 

B7(4 
1.8523 
1.8283 
1.7369 
1.7040 
1 A389 
1.5755 
1.5441 

B3(0 
1.4375 
1.4111 
1.3065 
1.2685 
1.1953 
1.1273 
1.0947 

b11(0 
1.4273 
1.4055 
1.3119 
1.2756 
1.2039 
1.1363 
1.1037 

B,l@)  
1.5090 
1.4855 
1.3902 
1.3544 
1.2838 
1.2169 
1.1846 

Bll(1) 
1.8723 
1.8413 
1.7385 
1.7045 
1.6389 
1.5755 
1.5441 

B7(4 
1.4209 
1.3987 
1.3036 
1.2671 
1.1951 
1.1273 
1.0947 

b11(4 
1.4182 
1.3966 
1.3032 
1.2669 
1.1950 
1.1273 
1.0947 

TABLE 1. Kumerical values of the functions A(Z) and B(1) defined in (164) and (165). The values of 
l / a  given are taken directly from tables 6 and 8A of Goldman et al. (1966), table 2 of Cooley & 
O’Neill (1969) and table 2 of O’Neill & Majumdar (1970). 

We note that the results for the mobility functions show the same symmetric 
properties as the resistance matrix. Also i t  is shown that in all the four cases above, 
in the limit of K = 0, our results recover the solutions given by Jeffrey & Onishi as 
physically expected. 

A comparison of our numerical results with the exact results given by Stimson & 
Jeffery (1926), Goldman, Cox & Brenner (1966), Cooley & O’Neill (1969) and O’Neill 
& Majumdar (1970) in the case of two equal spheres with radius a is shown in 
table 1, where the coefficients A(1) and B(Z) are defined as 
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The subscripts 3 , 7  and 11 in table 1 denote that these coefficients are obtained from 
our power series expansions with terms up to orders P, E7 and Z-ll, respectively, and 
the A(E) (exact) and B(2) (exact) are the exact results. In the case of Kn = 0, our 
numerical results should be the same as those obtainable from Jeffrey & Onishi 
(1984) and from Felderhof (1977) (only to the order of Z-’ in Felderhof’s results). To 
show the effect of different values of the Knudsen number, we list the numerical 
values of the coefficients A(Z) and B(Z) for K n  = 0, 0.01, 0.1, 0.5, respectively. 
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